Formation of Dimeric Acetylenes: an Unexpected Reaction of Acetylenic Selenides

João V. Comasseto,*ª Valdomiro Catani,^b José T. B. Ferreira,*^b and Antonio L. Braga^c

^a Instituto de Química, Universidade de São Paulo, Cx. Postal, 20780, São Paulo, Brazil

^b Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP, Brazil

^c Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil

1-Selenoalk-1-ynes react with *m*-chloroperoxybenzoic acid in tetrahydrofuran–water furnishing 1,4-disubstituted 1,3-diynes free of selenium in high yield.

Acetylenic selenides are compounds that have not been widely investigated.¹⁻⁶ Recently we have developed methods for the synthesis of this class of compounds and have demonstrated that they can be conveniently transformed into vinylic selenides^{3.7} or into mono- and di-substituted acetylenes free of selenium.⁴ In this communication, we report a new and unexpected reaction of this class of organoselenium compounds.

Previously we found that oxidation of 1-selenoalk-1-ynes with *m*-chloroperoxybenzoic acid (*m*-CPBA) in a mixture of tetrahydrofuran (THF)-water, followed by immediate treatment of the reaction mixture with 1 \bowtie sodium hydroxide, leads to alk-1-ynes free of selenium.⁸ Surprisingly, when a mixture of the 1-selenoalk-1-yne and *m*-chloroperoxybenzoic acid is maintained at room temperature for a prolonged time (4.5-12 h) symmetrically 1,4-disubstituted buta-1,3-diynes are formed in high yield (equation 1).

$$R-C=C-SeR^{1} \xrightarrow{m-CPBA (1.5 \text{ equiv.})} R-C=C-C=C-R \quad (1)$$

Acetylenic selenoxides are presumed to be intermediates in

Table 1. Oxidation of 1-selenoalk-1-ynes^a to 1,4-disubstituted buta-1,3-diynes.^b

R	Rı	Reaction time/h	Yield ^d /%
Ph	Ph	6	86
p-MeC ₆ H ₄	Ph	8	80
Ph	Et	12	60c
Cyclohex-1-enyl	Ph	12	79
Cyclohex-1-enyl	m-CF ₃ C ₆ H ₄	12	81
n-C ₄ H ₉	Ph	12	No reaction
n-C₄H9	m-CF ₃ C ₆ H ₄	12	No reaction

^a For the preparation of the acetylenic selenides see ref. 8. ^b The spectral and combustion data are in accordance with the proposed structures. ^c Phenylacetylene was isolated as by-product. ^d Yield of the isolated products purified by column chromatography eluting with hexane.

this reaction. When R^1 is an ethyl group, the reaction is slower than when it is a phenyl group. This is in accord with published data concerning selenoxide elimination.⁹ No reaction was observed in the cases where R was a saturated alkyl group. However, the diyne was obtained in good yield when R was the cyclohex-1-enyl group. These results indicate that the reaction is sensitive to electronic factors.

The dimerization reaction was carried out by adding *m*-chloroperoxybenzoic acid to a solution of 1-selenoalk-1-yne in a mixture of THF-H₂O (10:1) at 0 °C and then stirring the reaction mixture at room temperature (Table 1). Treatment with 1 \bowtie sodium hydroxide and column chromatography of the residue provided the 1,4-disubstituted buta-1,3-diynes in the yields indicated in Table 1.

The results reported in this communication show that the oxidation of 1-selenoalk-1-ynes is a mild and efficient procedure for the dimerization of terminal acetylenes.¹⁰

We thank FAPESP, CNPq, and FINEP for financial support.

Received, 8th April 1986; Com. 462

References

- 1 N. Petragnani, R. Rodrigues, and J. V. Comasseto, J. Organomet. Chem., 1976, 114, 281.
- 2 T. Hayama, S. Tomoda, Y. Takeuchi, and Y. Nomura, Chem. Lett., 1982, 1249.
- 3 J. V. Comasseto, J. T. B. Ferreira, and N. Petragnani, J. Organomet. Chem., 181, 216, 287.
- 4 A. L. Braga, J. V. Comasseto, and N. Petragnani, *Synthesis*, 1984, 240.
- 5 A. Shafiee, S. Toghraie, F. Aria, and G. Mortezaei, J. Heterocycl. Chem., 1982, 19, 130.
- 6 I. Lalezari, Synthesis, 1984, 660.
- 7 J. V. Comasseto, J. Organomet. Chem., 1983, 253, 131.
- 8 J. V. Comasseto, C. C. Silveira, J. T. B. Ferreira, and V. Catani, Synth. Commun., 1986, 16, 283.
- 9 D. Labar, L. Hevesi, W. Dumont, and A. Krief, *Tetrahedron Lett.*, 1978, 1141.
- 10 For previous syntheses of symmetrically 1,4-disubstituted 1,3diynes see: R. Rossi, A. Carpita, and C. Bigelli, *Tetrahedron Lett.*, 1985, **26**, 523 and references therein.